Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.336
Filtrar
1.
J Am Chem Soc ; 146(14): 9790-9800, 2024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-38549219

RESUMO

HDM2 negatively regulates the activity of the tumor suppressor p53. Previous NMR studies have shown that apo-HDM2 interconverts between an "open" state in which the N-terminal "lid" is disordered and a "closed" state in which the lid covers the p53-binding site in the core region. Molecular dynamics (MD) simulation studies have been performed to elucidate the conformational dynamics of HDM2, but the direct relevance of the experimental and computational analyses is unclear. In addition, how the phosphorylation of S17 in the lid contributes to the inhibition of p53 binding remains controversial. Here, we used both NMR and MD simulations to investigate the conformational dynamics of apo-HDM2. The NMR analysis revealed that apo-HDM2 exists in a fast-exchanging equilibrium within two closed states, closed 1 and closed 2, in addition to a previously demonstrated slow-exchanging "open-closed" equilibrium. MD simulations visualized two characteristic closed states, where the spatial orientation of the key residues corresponds well to the chemical shift changes of the NMR spectra. Furthermore, the phosphorylation of S17 induced an equilibrium shift toward closed 1, thereby suppressing the binding of p53 to HDM2. This study reveals a multi-state equilibrium of apo-HDM2 and provides new insights into the regulation mechanism of HDM2-p53 interactions.


Assuntos
Simulação de Dinâmica Molecular , Proteína Supressora de Tumor p53 , Proteína Supressora de Tumor p53/química , Proteínas Proto-Oncogênicas c-mdm2/química , Ligação Proteica , Espectroscopia de Ressonância Magnética
2.
Mol Biol Evol ; 41(2)2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-38301272

RESUMO

The transcription factor and cell cycle regulator p53 is marked for degradation by the ubiquitin ligase MDM2. The interaction between these 2 proteins is mediated by a conserved binding motif in the disordered p53 transactivation domain (p53TAD) and the folded SWIB domain in MDM2. The conserved motif in p53TAD from zebrafish displays a 20-fold weaker interaction with MDM2, compared to the interaction in human and chicken. To investigate this apparent difference, we tracked the molecular evolution of the p53TAD/MDM2 interaction among ray-finned fishes (Actinopterygii), the largest vertebrate clade. Intriguingly, phylogenetic analyses, ancestral sequence reconstructions, and binding experiments showed that different loss-of-affinity changes in the canonical binding motif within p53TAD have occurred repeatedly and convergently in different fish lineages, resulting in relatively low extant affinities (KD = 0.5 to 5 µM). However, for 11 different fish p53TAD/MDM2 interactions, nonconserved regions flanking the canonical motif increased the affinity 4- to 73-fold to be on par with the human interaction. Our findings suggest that compensating changes at conserved and nonconserved positions within the motif, as well as in flanking regions of low conservation, underlie a stabilizing selection of "functional affinity" in the p53TAD/MDM2 interaction. Such interplay complicates bioinformatic prediction of binding and calls for experimental validation. Motif-mediated protein-protein interactions involving short binding motifs and folded interaction domains are very common across multicellular life. It is likely that the evolution of affinity in motif-mediated interactions often involves an interplay between specific interactions made by conserved motif residues and nonspecific interactions by nonconserved disordered regions.


Assuntos
Proteína Supressora de Tumor p53 , Peixe-Zebra , Animais , Humanos , Proteína Supressora de Tumor p53/genética , Proteína Supressora de Tumor p53/química , Proteína Supressora de Tumor p53/metabolismo , Filogenia , Estrutura Terciária de Proteína , Ligação Proteica , Proteínas Proto-Oncogênicas c-mdm2/genética , Proteínas Proto-Oncogênicas c-mdm2/química , Proteínas Proto-Oncogênicas c-mdm2/metabolismo
3.
PLoS Comput Biol ; 20(2): e1011519, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38324587

RESUMO

ASPP2 and iASPP bind to p53 through their conserved ANK-SH3 domains to respectively promote and inhibit p53-dependent cell apoptosis. While crystallography has indicated that these two proteins employ distinct surfaces of their ANK-SH3 domains to bind to p53, solution NMR data has suggested similar surfaces. In this study, we employed multi-scale molecular dynamics (MD) simulations combined with free energy calculations to reconcile the discrepancy in the binding modes. We demonstrated that the binding mode based solely on a single crystal structure does not enable iASPP's RT loop to engage with p53's C-terminal linker-a verified interaction. Instead, an ensemble of simulated iASPP-p53 complexes facilitates this interaction. We showed that the ensemble-average inter-protein contacting residues and NMR-detected interfacial residues qualitatively overlap on ASPP proteins, and the ensemble-average binding free energies better match experimental KD values compared to single crystallgarphy-determined binding mode. For iASPP, the sampled ensemble complexes can be grouped into two classes, resembling the binding modes determined by crystallography and solution NMR. We thus propose that crystal packing shifts the equilibrium of binding modes towards the crystallography-determined one. Lastly, we showed that the ensemble binding complexes are sensitive to p53's intrinsically disordered regions (IDRs), attesting to experimental observations that these IDRs contribute to biological functions. Our results provide a dynamic and ensemble perspective for scrutinizing these important cancer-related protein-protein interactions (PPIs).


Assuntos
Proteínas Reguladoras de Apoptose , Proteína Supressora de Tumor p53 , Proteínas Reguladoras de Apoptose/química , Proteína Supressora de Tumor p53/química , Cristalografia , Ligação Proteica , Apoptose
4.
J Chem Theory Comput ; 20(3): 1423-1433, 2024 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-38230670

RESUMO

The pre-tetramerization loop (PTL) of the human tumor suppressor protein p53 is an intrinsically disordered region (IDR) necessary for the tetramerization process, and its flexibility contributes to the essential conformational changes needed. Although the IDR can be accurately simulated in the traditional manner of molecular dynamics (MD) with the end-to-end distance (EEdist) unhindered, we sought to explore the effects of restraining the EEdist to the values predicted by electron microscopy (EM) and other distances. Simulating the PTL trajectory with a restrained EEdist , we found an increased agreement of nuclear magnetic resonance (NMR) chemical shifts with experiments. Additionally, we observed a plethora of secondary structures and contacts that only appear when the trajectory is restrained. Our findings expand the understanding of the tetramerization of p53 and provide insight into how mutations could make the protein impotent. In particular, our findings demonstrate the importance of restraining the EEdist in studying IDRs and how their conformations change under different conditions. Our results provide a better understanding of the PTL and the conformational dynamics of IDRs in general, which are useful for further studies regarding mutations and their effects on the activity of p53.


Assuntos
Proteínas Intrinsicamente Desordenadas , Simulação de Dinâmica Molecular , Humanos , Proteína Supressora de Tumor p53/química , Proteínas Intrinsicamente Desordenadas/química , Estrutura Secundária de Proteína , Espectroscopia de Ressonância Magnética , Conformação Proteica
5.
J Phys Chem B ; 127(50): 10682-10690, 2023 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-38078851

RESUMO

In this work, we investigate the role of solvent in the binding reaction of the p53 transactivation domain (TAD) peptide to its receptor MDM2. Previously, our group generated 831 µs of explicit-solvent aggregate molecular simulation trajectory data for the MDM2-p53 peptide binding reaction using large-scale distributed computing and subsequently built a Markov State Model (MSM) of the binding reaction (Zhou et al. 2017). Here, we perform a tICA analysis and construct an MSM with similar hyperparameters while using only solvent-based structural features. We find a remarkably similar landscape but accelerated implied timescales for the slowest motions. The solvent shells contributing most to the first tICA eigenvector are those centered on Lys24 and Thr18 of the p53 TAD peptide in the range of 3-6 Å. Important solvent shells were visualized to reveal solvation and desolvation transitions along the peptide-protein binding trajectories. Our results provide a solvent-centric view of the hydrophobic effect in action for a realistic peptide-protein binding scenario.


Assuntos
Proteína Supressora de Tumor p53 , Água , Ligação Proteica , Solventes , Água/metabolismo , Proteína Supressora de Tumor p53/química , Simulação de Dinâmica Molecular , Peptídeos/metabolismo , Proteínas Proto-Oncogênicas c-mdm2/metabolismo
6.
Protein Sci ; 32(8): e4723, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37409874

RESUMO

PADI4 is one of the human isoforms of a family of enzymes implicated in the conversion of arginine to citrulline. MDM2 is an E3 ubiquitin ligase which is crucial for down-regulation of degradation of the tumor suppressor gene p53. Given the relationship between both PADI4 and MDM2 with p53-signaling pathways, we hypothesized they may interact directly, and this interaction could be relevant in the context of cancer. Here, we showed their association in the nucleus and cytosol in several cancer cell lines. Furthermore, binding was hampered in the presence of GSK484, an enzymatic PADI4 inhibitor, suggesting that MDM2 could bind to the active site of PADI4, as confirmed by in silico experiments. In vitro and in silico studies showed that the isolated N-terminal region of MDM2, N-MDM2, interacted with PADI4, and residues Thr26, Val28, Phe91 and Lys98 were more affected by the presence of the enzyme. Moreover, the dissociation constant between N-MDM2 and PADI4 was comparable to the IC50 of GSK484 from in cellulo experiments. The interaction between MDM2 and PADI4 might imply MDM2 citrullination, with potential therapeutic relevance for improving cancer treatment, due to the generation of new antigens.


Assuntos
Neoplasias , Proteína Supressora de Tumor p53 , Humanos , Proteína Supressora de Tumor p53/química , Ubiquitina-Proteína Ligases/química , Desiminases de Arginina em Proteínas/metabolismo , Linhagem Celular , Ligação Proteica , Proteínas Proto-Oncogênicas c-mdm2/metabolismo
7.
Chem Rev ; 123(14): 9094-9138, 2023 07 26.
Artigo em Inglês | MEDLINE | ID: mdl-37379327

RESUMO

Biomolecular condensates, membrane-less entities arising from liquid-liquid phase separation, hold dichotomous roles in health and disease. Alongside their physiological functions, these condensates can transition to a solid phase, producing amyloid-like structures implicated in degenerative diseases and cancer. This review thoroughly examines the dual nature of biomolecular condensates, spotlighting their role in cancer, particularly concerning the p53 tumor suppressor. Given that over half of the malignant tumors possess mutations in the TP53 gene, this topic carries profound implications for future cancer treatment strategies. Notably, p53 not only misfolds but also forms biomolecular condensates and aggregates analogous to other protein-based amyloids, thus significantly influencing cancer progression through loss-of-function, negative dominance, and gain-of-function pathways. The exact molecular mechanisms underpinning the gain-of-function in mutant p53 remain elusive. However, cofactors like nucleic acids and glycosaminoglycans are known to be critical players in this intersection between diseases. Importantly, we reveal that molecules capable of inhibiting mutant p53 aggregation can curtail tumor proliferation and migration. Hence, targeting phase transitions to solid-like amorphous and amyloid-like states of mutant p53 offers a promising direction for innovative cancer diagnostics and therapeutics.


Assuntos
Neoplasias , Ácidos Nucleicos , Humanos , Proteína Supressora de Tumor p53/genética , Proteína Supressora de Tumor p53/química , Proteína Supressora de Tumor p53/metabolismo , Agregados Proteicos , Neoplasias/metabolismo , Amiloide/química
8.
J Am Chem Soc ; 145(27): 14932-14944, 2023 07 12.
Artigo em Inglês | MEDLINE | ID: mdl-37365684

RESUMO

With advances in chemically induced proximity technologies, heterobifunctional modalities such as proteolysis targeting chimeras (PROTACs) have been successfully advanced to clinics for treating cancer. However, pharmacologic activation of tumor-suppressor proteins for cancer treatment remains a major challenge. Here, we present a novel Acetylation Targeting Chimera (AceTAC) strategy to acetylate the p53 tumor suppressor protein. We discovered and characterized the first p53Y220C AceTAC, MS78, which recruits histone acetyltransferase p300/CBP to acetylate the p53Y220C mutant. MS78 effectively acetylated p53Y220C lysine 382 (K382) in a concentration-, time-, and p300-dependent manner and suppressed proliferation and clonogenicity of cancer cells harboring the p53Y220C mutation with little toxicity in cancer cells with wild-type p53. RNA-seq studies revealed novel p53Y220C-dependent upregulation of TRAIL apoptotic genes and downregulation of DNA damage response pathways upon acetylation induced by MS78. Altogether, the AceTAC strategy could provide a generalizable platform for targeting proteins, such as tumor suppressors, via acetylation.


Assuntos
Proteína Supressora de Tumor p53 , Acetilação , Humanos , Linhagem Celular Tumoral , Proteína Supressora de Tumor p53/química , Proteína Supressora de Tumor p53/genética , Mutação , Modelos Moleculares , Processamento de Proteína Pós-Traducional , Estrutura Terciária de Proteína
9.
Protein Sci ; 32(7): e4684, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37211711

RESUMO

The interaction between the transcription factor p53 and the ubiquitin ligase MDM2 results in the degradation of p53 and is well-studied in cancer biology and drug development. Available sequence data suggest that both p53 and MDM2-family proteins are present across the animal kingdom. However, the interacting regions are missing in some animal groups, and it is not clear whether MDM2 interacts with, and regulates p53 in all species. We used phylogenetic analyses and biophysical measurements to examine the evolution of affinity between the interacting protein regions: a conserved 12-residue intrinsically disordered binding motif in the p53 transactivation domain (TAD) and the folded SWIB domain of MDM2. The affinity varied significantly across the animal kingdom. The p53TAD/MDM2 interaction among jawed vertebrates displayed high affinity, in particular for chicken and human proteins (KD around 0.1 µM). The affinity of the bay mussel p53TAD/MDM2 complex was lower (KD = 15 µM) and those from a placozoan, an arthropod, and a jawless vertebrate were very low or non-detectable (KD > 100 µM). Binding experiments with reconstructed ancestral p53TAD/MDM2 variants suggested that a micromolar affinity interaction was present in the ancestral bilaterian animal and was later enhanced in tetrapods while lost in other linages. The different evolutionary trajectories of p53TAD/MDM2 affinity during speciation demonstrate high plasticity of motif-mediated interactions and the potential for rapid adaptation of p53 regulation during times of change. Neutral drift in unconstrained disordered regions may underlie the plasticity and explain the observed low sequence conservation in TADs such as p53TAD.


Assuntos
Proteínas Proto-Oncogênicas c-mdm2 , Proteína Supressora de Tumor p53 , Animais , Humanos , Proteína Supressora de Tumor p53/química , Ligação Proteica , Ativação Transcricional , Estrutura Terciária de Proteína , Filogenia , Proteínas Proto-Oncogênicas c-mdm2/genética , Proteínas Proto-Oncogênicas c-mdm2/metabolismo
10.
J Mol Graph Model ; 122: 108472, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37086514

RESUMO

Cancer is one of the leading causes of mortality in the world. Despite the existence of diverse antineoplastic treatments, these do not possess the expected efficacy in many cases. Knowledge of the molecular mechanisms involved in tumor processes allows the identification of a greater number of therapeutic targets employed in the study of new anticancer drugs. In the last decades, peptide-based therapy design using computational chemistry has gained importance in the field of oncology therapeutics. This work aims to evaluate the electronic structure, physicochemical properties, stability, and inhibition of ETFS amino acids and peptides derived from the p53-MDM2 binding domain with action in cancer cells; by means of chemical descriptors at the DFT-BHandHLYP level in an aqueous solution, and its intermolecular interactions through molecular docking studies. The results show that The ETFS fragment plays a critical role in the intermolecular interactions. Thus, the amino acids E17, T18 and S20 increase intermolecular interactions through hydrogen bonds and enhance structural stability. F19, W23 and V25 enhance the formation of the alpha-helix. The hydrogen bonds formed by the backbone atoms for PNC-27, PNC-27-B and PNC-28 stabilize the α-helices more than hydrogen bonds formed by the side chains atoms. Also, molecular docking indicated that the PNC27B-MDM2, PNC28B-MDM2, PNC27-MDM2 and PNC28A-MDM2 complexes show the best binding energy. Therefore, DFT and molecular docking studies showed that the proposed peptides: PNC-28B, PNC-27B and PNC-28A could inhibit the binding of MDM2 to the p53 protein, decreasing the translocation and degradation of p53 native protein.


Assuntos
Aminoácidos , Proteína Supressora de Tumor p53 , Proteína Supressora de Tumor p53/química , Simulação de Acoplamento Molecular , Aminoácidos/farmacologia , Aminoácidos/metabolismo , Teoria da Densidade Funcional , Proteínas Proto-Oncogênicas c-mdm2/química , Peptídeos/química , Ligação Proteica
11.
J Mol Model ; 29(2): 55, 2023 Jan 26.
Artigo em Inglês | MEDLINE | ID: mdl-36700982

RESUMO

CONTEXT: The mutations in the TP53 gene are the most frequent (50-60% of human cancer) genetic alterations in cancer cells, indicating the critical role of wild-type p53 in the regulation of cell proliferation and apoptosis upon oncogenic stress. Most missense mutations are clustered in the DNA-binding core domain, disrupting DNA binding ability. However, some mutations like Y220C occur outside the DNA binding domain and are associated with p53 structure destabilization. Overall, the results of these mutations are single amino acid substitutions in p53 and the production of dysfunctional p53 protein in large amounts, consequently allowing the escape of apoptosis and rapid progression of tumor growth. Thus, therapeutic targeting of mutant p53 in tumors to restore its wild-type tumor suppression activity has immense potential for translational cancer research. Various molecules have been discovered with modern scientific techniques to reactivate mutant p53 by reverting structural changes and/or DNA binding ability. These compounds include small molecules, various peptides, and phytochemicals. TP53 protein is long thought of as a potential target; however, its translation for therapeutic purposes is still in its infancy. The study comprehensively analyzed the therapeutic potential of small phytochemicals from Foeniculum vulgare (Fennel) with drug-likeness and capability to reactivate mutant p53 (Y220C) through molecular docking simulation. The docking study and the stable molecular dynamic simulations revealed juglalin (- 8.6 kcal/mol), retinol (- 9.14 kcal/mol), and 3-nitrofluoranthene (- 8.43 kcal/mol) significantly bind to the mutated site suggesting the possibility of drug designing against the Y220C mutp53. The study supports these compounds for further animal based in vivo and in vitro research to validate their efficacy. METHODS: For the purposes of drug repurposing, recently in-silico methods have presented with opportunity to rule out many compounds which have less probability to act as a drug based on their structural moiety and interaction with the target macromolecule. The study here utilizes molecular docking via Autodock 4.2.6 and molecular dynamics using Schrodinger 2021 to find potential therapeutic options which are capable to reactive the mutated TP53 protein.


Assuntos
Foeniculum , Neoplasias , Animais , Humanos , Proteína Supressora de Tumor p53/genética , Proteína Supressora de Tumor p53/química , Proteína Supressora de Tumor p53/metabolismo , Foeniculum/genética , Foeniculum/metabolismo , Genes p53 , Simulação de Acoplamento Molecular , Neoplasias/tratamento farmacológico , Neoplasias/genética , Neoplasias/patologia , Mutação , DNA
12.
J Biomol Struct Dyn ; 41(1): 176-185, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-34787057

RESUMO

The tumour suppressing p53 is a target for genetic alterations in human cancer. Native p53, found in latent state in cells, gets activated following various intracellular or extracellular responses. It plays imperative role in cell-cycle control, via growth-arrest, DNA repair and apoptosis, mainly regulated by post-translational modifications (PTM). However, the influence of PTMs on the activity of p53 is still under extensive experimental and computational study. There are numerous PTM sites in p53, which are reported to regulate its binding affinities with other proteins. Of the many, Thr18 at transactivational domain (TAD) of p53 is reported to amplify p53 activity upon phosphorylation. To understand the molecular basis of p53 recognition by its binding partner upon mutations and PTMs, we have exploited all atom molecular dynamic (MD) simulation of p53TAD1 bound to TAZ2 domain of p300. The MD simulation inferred that phosphorylated and mutated Thr18, as a phospho-mimic, bound with TAZ2, redistributed the charge environment of the interface, thereby modulating the stronger interactions with TAZ2 to enhance the binding efficiency. The electrostatic interactions due to different charge environment together with H-bonding and hydrophobic interaction dictate diverse binding approach between the two. The results of this computational study further explain the importance of the Thr18 as a PTM site in atomistic detail, hence shedding further light to the understanding of how PTMs are imperative for p53 activity to protect the cellular world.Communicated by Ramaswamy H. Sarma.


Assuntos
Processamento de Proteína Pós-Traducional , Proteína Supressora de Tumor p53 , Humanos , Mutação , Fosforilação , Ligação Proteica , Proteína Supressora de Tumor p53/genética , Proteína Supressora de Tumor p53/química , Ativação Transcricional , Domínios Proteicos
13.
J Biomol Struct Dyn ; 41(12): 5817-5826, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-35822492

RESUMO

Cancer is a major global health issue that has a high mortality rate. p53, which functions as a tumor suppressor, is critical in preventing tumor development by regulating the cell cycle and inducing apoptosis in damaged cells. However, the tumor suppressor function of p53 is effectively inhibited by its direct interaction with the hydrophobic cleft of MDM2 protein via multiple mechanisms As a result, restoring p53 activity by blocking the p53-MDM2 protein-protein interaction has been proposed as a compelling therapeutic strategy for cancer treatment. The use of molecular docking and phytochemical screening procedures are appraised to inhibit MDM2's hydrophobic cleft and disrupt the p53-MDM2 interaction. For this purpose, a library of 51 bioactive compounds from 10 medicinal plants was compiled and subjected to structure-based virtual screening. Out of these, only 3 compounds (Atalantoflavone, Cudraxanthone 1, and Ursolic acid) emerged as promising inhibitors of MDM2-p53 based on their binding affinities (-9.1 kcal/mol, -8.8 kcal/mol, and -8.8 kcal/mol respectively) when compared to the standard (-8.8 kcal/mol). Moreover, these compounds showed better pharmacokinetic and drug-like profiling than the standard inhibitor (Chromonotriazolopyrimidine 1). Finally, the 100 ns MD simulation analysis confirmed no significant perturbation in the conformational dynamics of the simulated binary complexes when compared to the standard. In particular, Ursolic acid was found to satisfy the molecular enumeration the most compared to the other inhibitors. Our overall molecular modeling finding shows why these compounds may emerge as potent arsenals for cancer therapeutics. Nonetheless, extensive experimental and clinical research is needed to augment their use in clinics.Communicated by Ramaswamy H. Sarma.


Assuntos
Neoplasias , Plantas Medicinais , Humanos , Simulação de Acoplamento Molecular , Proteína Supressora de Tumor p53/química , Proteínas Proto-Oncogênicas c-mdm2/química , Proteínas Proto-Oncogênicas c-mdm2/metabolismo , Dimerização , Neoplasias/tratamento farmacológico , Ligação Proteica
14.
Org Biomol Chem ; 20(40): 7963-7971, 2022 10 19.
Artigo em Inglês | MEDLINE | ID: mdl-36190455

RESUMO

Novel all-hydrocarbon cross-linked aza-stapled peptides were designed and synthesized for the first time by ring-closing metathesis between two aza-alkenylglycine residues. Three aza-stapled peptidic analogues based on the peptide dual inhibitor of p53-MDM2/MDMX interactions were synthesized and screened for biological activities. Among the three aza-stapled peptides, aSPDI-411 displayed increased anti-tumor activity, binding affinities to both MDM2 and MDMX, and cell membrane permeability compared to its linear peptide counterpart.


Assuntos
Proteínas Proto-Oncogênicas c-mdm2 , Proteína Supressora de Tumor p53 , Proteína Supressora de Tumor p53/química , Sequência de Aminoácidos , Peptídeos/química , Ligação Proteica , Hidrocarbonetos
15.
J Phys Chem B ; 126(42): 8495-8507, 2022 10 27.
Artigo em Inglês | MEDLINE | ID: mdl-36245142

RESUMO

Allosteric regulation of protein activity pervades biology as the "second secret of life." We have been examining the allosteric regulation and mutant reactivation of the tumor suppressor protein p53. We have found that generalizing the definition of allosteric effector to include entire proteins and expanding the meaning of binding site to include the interface of a transcription factor with its DNA to be useful in understanding the modulation of protein activity. Here, we cast the variable regions of p53 isoforms as allosteric regulators of p53 interactions with its consensus DNA. We implemented molecular dynamics simulations and our lab's new techniques of molecular dynamics (MD) sectors and MD-Markov state models to investigate the effects of nine naturally occurring splice variant isoforms of p53. We find that all of the isoforms differ from wild type in their dynamic properties and how they interact with the DNA. We consider the implications of these findings on allostery and cancer treatment.


Assuntos
Simulação de Dinâmica Molecular , Proteína Supressora de Tumor p53 , Proteína Supressora de Tumor p53/química , Regulação Alostérica , DNA/química , Isoformas de Proteínas/metabolismo , Fatores de Transcrição/metabolismo , Ligação Proteica
16.
Methods Enzymol ; 675: 83-107, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36220282

RESUMO

Mutation of p53 is the most common genetic alteration in human cancer. The vast majority of p53 mutations found in cancer are missense mutations, with some single nucleotide point mutations leading to the accumulation of mutant p53 protein with potential gain of oncogenic function. The mechanism for stabilization and accumulation of missense mutant p53 protein in malignant cells is not fully understood. It is thought that DNAJA1 plays a crucial role as a co-chaperone protein by stabilizing mutant p53 and amplifying oncogenic potential. As such, identifying small molecule inhibitors to disrupt the protein-protein interaction between mutant p53 and DNAJA1 may lead to an effective treatment for preventing carcinogenesis. Studying protein-protein interactions and identifying potential druggable hotspots has historically been limited-protein-protein binding sites require more complex characterization than those of single proteins and the crystal structures of many proteins have not been identified. Due to these issues, identifying salient druggable targets in protein-protein interactions through bench research may take years to complete. However, in silico modeling approaches allow for rapid characterization of protein-protein interfaces and the druggable binding sites they contain. In this chapter, we first review the oncogenic potential of mutant p53 and the crucial role of DNAJA1 in stabilizing missense mutant p53. We then detail our methodology for using in silico modeling and molecular biology to identify druggable protein-protein interaction sites/pockets between mutant p53 and DNAJA1. Finally, we discuss screening for and validating the utility of a small molecule inhibitor identified through our in silico framework. Specifically, we describe GY1-22, a unique compound with activity against mutant p53 that demonstrates therapeutic potential to inhibit cancer cell growth both in vivo and in vitro.


Assuntos
Neoplasias , Proteína Supressora de Tumor p53 , Carcinogênese , Simulação por Computador , Proteínas de Choque Térmico HSP40/metabolismo , Humanos , Proteínas Mutantes/metabolismo , Nucleotídeos/metabolismo , Proteína Supressora de Tumor p53/química
17.
J Mol Biol ; 434(22): 167844, 2022 11 30.
Artigo em Inglês | MEDLINE | ID: mdl-36181774

RESUMO

Autoinhibition of p53 binding to MDMX requires two short-linear motifs (SLiMs) containing adjacent tryptophan (WW) and tryptophan-phenylalanine (WF) residues. NMR spectroscopy was used to show the WW and WF motifs directly compete for the p53 binding site on MDMX and circular dichroism spectroscopy was used to show the WW motif becomes helical when it is bound to the p53 binding domain (p53BD) of MDMX. Binding studies using isothermal titration calorimetry showed the WW motif is a stronger inhibitor of p53 binding than the WF motif when they are both tethered to p53BD by the natural disordered linker. We also investigated how the WW and WF motifs interact with the DNA binding domain (DBD) of p53. Both motifs bind independently to similar sites on DBD that overlap the DNA binding site. Taken together our work defines a model for complex formation between MDMX and p53 where a pair of disordered SLiMs bind overlapping sites on both proteins.


Assuntos
Proteínas Proto-Oncogênicas c-mdm2 , Proteína Supressora de Tumor p53 , Fenilalanina/química , Ligação Proteica , Proteínas Proto-Oncogênicas c-mdm2/química , Triptofano/química , Proteína Supressora de Tumor p53/química , Motivos de Aminoácidos , Domínios Proteicos , Humanos
18.
J Chem Inf Model ; 62(18): 4523-4536, 2022 09 26.
Artigo em Inglês | MEDLINE | ID: mdl-36083825

RESUMO

Intrinsically disordered proteins (IDPs) play crucial roles in cellular regulatory networks and are now recognized to often remain highly dynamic even in specific interactions and assemblies. Accurate description of these dynamic interactions is extremely challenging using atomistic simulations because of the prohibitive computational cost. Efficient coarse-grained approaches could offer an effective solution to overcome this bottleneck if they could provide an accurate description of key local and global properties of IDPs in both unbound and bound states. The recently developed hybrid-resolution (HyRes) protein model has been shown to be capable of providing a semiquantitative description of the secondary structure propensities of IDPs. Here, we show that greatly improved description of global structures and transient interactions can be achieved by introducing a solvent-accessible surface area-based implicit solvent term followed by reoptimization of effective interaction strengths. The new model, termed HyRes II, can semiquantitatively reproduce a wide range of local and global structural properties of a set of IDPs of various lengths and complexities. It can also distinguish the level of compaction between folded proteins and IDPs. In particular, applied to the disordered N-terminal transactivation domain (TAD) of tumor suppressor p53, HyRes II is able to recapitulate various nontrivial structural properties compared to experimental results, some of them to a level of accuracy that is almost comparable to results from atomistic explicit solvent simulations. Furthermore, we demonstrate that HyRes II can be used to simulate the dynamic interactions of TAD with the DNA-binding domain of p53, generating structural ensembles that are highly consistent with existing NMR data. We anticipate that HyRes II will provide an efficient and relatively reliable tool toward accurate coarse-grained simulations of dynamic protein interactions.


Assuntos
Proteínas Intrinsicamente Desordenadas , DNA , Proteínas Intrinsicamente Desordenadas/química , Conformação Proteica , Estrutura Secundária de Proteína , Solventes , Proteína Supressora de Tumor p53/química
19.
PLoS Comput Biol ; 18(9): e1010036, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-36084124

RESUMO

Intrinsically disordered proteins (IDPs) are highly dynamic systems that play an important role in cell signaling processes and their misfunction often causes human disease. Proper understanding of IDP function not only requires the realistic characterization of their three-dimensional conformational ensembles at atomic-level resolution but also of the time scales of interconversion between their conformational substates. Large sets of experimental data are often used in combination with molecular modeling to restrain or bias models to improve agreement with experiment. It is shown here for the N-terminal transactivation domain of p53 (p53TAD) and Pup, which are two IDPs that fold upon binding to their targets, how the latest advancements in molecular dynamics (MD) simulations methodology produces native conformational ensembles by combining replica exchange with series of microsecond MD simulations. They closely reproduce experimental data at the global conformational ensemble level, in terms of the distribution properties of the radius of gyration tensor, and at the local level, in terms of NMR properties including 15N spin relaxation, without the need for reweighting. Further inspection revealed that 10-20% of the individual MD trajectories display the formation of secondary structures not observed in the experimental NMR data. The IDP ensembles were analyzed by graph theory to identify dominant inter-residue contact clusters and characteristic amino-acid contact propensities. These findings indicate that modern MD force fields with residue-specific backbone potentials can produce highly realistic IDP ensembles sampling a hierarchy of nano- and picosecond time scales providing new insights into their biological function.


Assuntos
Proteínas Intrinsicamente Desordenadas , Humanos , Proteínas Intrinsicamente Desordenadas/química , Simulação de Dinâmica Molecular , Conformação Proteica , Proteína Supressora de Tumor p53/química
20.
Chembiochem ; 23(17): e202200310, 2022 09 05.
Artigo em Inglês | MEDLINE | ID: mdl-35789183

RESUMO

Mutations in tumor suppressor genes, such as Tumor Protein 53 (TP53), are heavily implicated in aggressive cancers giving rise to gain- and loss-of-function phenotypes. While individual domains of the p53 protein have been studied extensively, structural information for full-length p53 remains incomplete. Functionalized microprocessor chips (microchips) with properties amenable to electron microscopy permitted us to visualize complete p53 assemblies for the first time. The new structures revealed p53 in an inactive dimeric state independent of DNA binding. Residues located at the protein-protein interface corresponded with modification sites in cancer-related hot spots. Changes in these regions may amplify the toxic effects of clinical mutations. Taken together, these results contribute advances in technology and imaging approaches to decode native protein models in different states of activation.


Assuntos
Neoplasias , Proteína Supressora de Tumor p53 , Humanos , Microcomputadores , Mutação , Neoplasias/diagnóstico por imagem , Neoplasias/genética , Proteína Supressora de Tumor p53/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA